Religion, GDP and Happiness

The percentage of a country's population that feels religion plays an important role in their lives (x-axis) is negatively correlated with the GDP per capita (Y-axis, in log-scale):

Here are the heatmaps, first for religion:

and per capita GDP (PPP):

From the heat maps above, several countries in Africa and Asia stand out as having low per capita GDP and high importance of religion, while all of Scandinavia and Australia stand out as places with high per capita GDP and low importance of religion. The US is somewhat of an outlier with with highest per capita GDP in the world of ~$35k and about 65% of the population reporting that religion plays an important role in their lives.

For completeness sake, here is the heat map for life satisfaction, or long-term happiness:

Combining data on religion and GDP with data with data on long term happiness, we get roughly the following picture:

  1. Long term happiness correlates positively with per capita GDP.
  2. Long term happiness correlates negatively with importance of religion.
  3. Importance of religion correlates negatively with per capita GDP.

My guess is that the causal structure between the 3 variables: Religion (R), Happiness (H) and per capita GDP is the following:

When per capita  GDP is high, the basic needs of life are met, people are relatively comfortable, and therefore long term happiness is high, but for the same reason, very few people feel compelled to ask fundamental questions of the type that people turn to religion for. This has the effect of creating a negative correlation between Religion and Happiness. In the causal structure above, religion and happiness are related, but given per capita GDP, they are independent.

Understanding Happiness

Happiness is as hard to define as it is to achieve. Everybody wants to be happy. Even masochists. I think it is best to use  a non-constructive definition:

Happiness is the goal that drives all human actions and desires.

If long term happiness if everybody's ultimate goal, then it is worth learning how to achieve long term happiness. In fact, if being happy is the ultimate goal (as opposed to say, being wealthy), then our education system should also be teaching us how to be happy over a life time, rather than purely technical or vocational skills. Simple GDP growth does not imply an increase in the happiness of a society -- as indicated by data from the last ~40 years in the US, comparing per capita GDP and happiness levels:

Screen Shot 2012-12-17 at 3.09.43 PM

While per capita GDP has risen more or less steadily, happiness levels have remained more or less stagnant in the last ~40 years.

Should countries develop public policy with the goal of making a society happier, rather than with the goal of increasing GDP? I think it is an idea worth exploring (Scandinavian countries seem to rank highest in in the world in happiness scores, despite high taxes). The government of Bhutan came up with the Gross National Happiness index, which measures the average life satisfaction of the citizens in a country.

World_Map_of_Happiness

This correlates well with health, access to education, and wealth (GDP per capita). At any given time, the relationship between average happiness of a country and per capita GDP seems to log-linear, meaning that happiness is roughly linear in the log of the per capita GDP.

Screen Shot 2012-12-15 at 6.07.29 PM

This is because in order to increase the happiness level of a society by 1 unit, the increase in wealth required is proportional to the current welath. For e.g., if the required amount of increase in personal wealth for a group with per capita income of $1000 is $x, then it is $10x for a group with per capita income of $10,000.

Near the end of this talk, Daniel Kahneman says that in a study done with the Gallup organization, he found that:

Below an income of … $60,000 a year, people are unhappy, and they get progressively unhappier the poorer they get. Above that, we get an absolutely flat line. … Money does not buy you experiential happiness, but lack of money certainly buys you misery.

Kahneman distinguishes between two types of happiness: that of the experiencing self and that of the reflecting self. It is possible to be happy in the experiencing self but have a poor happiness score when reflecting on a long time frame in the past, and vice-versa. For the type of happiness that measure life satisfaction in retrospect, there is no flat time -- i.e. it continues to increase with increasing wealth. I don't find this too surprising. It is the difference between short term and long term happiness. It is easy to be happy in the short term at the expense of the long term. On the other hand, tolerating displeasure during hard work in the present can have a huge payoff in long term happiness in the future.

In this TED talk, Dan Gilbert showcases his research that shows that happiness can be synthesized by individuals. So happiness is not some finite resource that needs to be distributed among people, instead one can simply choose to be happy, despite seemingly adverse conditions. This is fascinating, because it provides experimental evidence that happiness has to do not just with our external circumstances (such as GDP per capita), but also with how we process information in our minds. Several religions have the concept of expressing gratitude. The act of being grateful basically synthesizes happiness out of thin air.

Average age of first-time Mothers

The average age of first time mothers in the developed countries of the world has been rising for the last ~40 years.

Here is another plot that shows the rate of occurrence of Down Syndrome, a chromosomal defect, as a function of the age of the mother at the time of child birth.

The curve really starts to shoot up at 30. In the UK, the average age of a first time mother is 30 years. It is well known that the fertility rate in women decreases after the age of 30 and drops rapidly after 35. Older mothers are likely to find it harder to have a baby and if they do, then they run a higher risk of chromosomal defects. Given the possibilities of all these negative consequences, the increase in the average age is a bit disturbing. It seems like there is a hidden cost to more women working and for longer.

Why is it that women are waiting longer before having their first born despite the risks? Most of my hypotheses (of which more than one, or none, may be true) have to do with women working:

  • Having invested significantly into an education, greater number of women are entering the workforce, with the desire to be financially independent.
  • There is greater financial pressure in families for women to work.
  • The policies of workplaces in these countries are not favourable to childbirth. I can see this is true in the US, but I doubt this holds for Wester European countries, which I know have policies favorable to child birth.

One source of further information is the following map, showing the absolute increase, in years, in the age of a first time mother, over the last 40 years, state by state in the US:

This number is highest in the North Eastern states of NY, NJ, MA, CT, etc. The intensity of the colors in the map above correlates well with population density, and with economic activity in general (meaning more working women).  Here are two more plots I came across in a US based study done by P&G, that suggest that at least in the US, employer policies may be responsible.

What would a mother value most from their employers?:

How much guilt to mothers feel about work-life balance?:

What is the biggest problem in the world?

I have been posing this question to friends and acquaintances (and to myself) in one form or another for a while now. The answers I have received have varied significantly. I am not the first to pose this question of course. Here is one of several online polls, posing the same question, with 700+ responses so far. Here are some others. Some of the responses I have received personally and gathered from various online postings like the ones above, in no particular order include:

Environmental change Poverty, Hunger, clean drinking water
The P vs NP problem Ego
War Communication between people
Lack of tolerance Jobs, economy
Ignorance Fear
Greed Lack of genuine love, hatred
Religion Racism
Moral decline Energy shortage
Sin Drugs
Terrorism Apathy, lack of empathy
Anger Pollution
Love for Money Politics
Forgetfulness of God Overpopulation, limited world resources
Toxic waste Consumerism
Death Selfishness
HIV All –isms: Nationalism, sexism, racism..
Cancer Envy

One of the problems with the way the question is posed above is that it does not specify what 'problem' and 'biggest' mean.

Define problem. We will define problem as 'That which brings suffering to humans'.

Define biggest.  Biggest could mean 'one that affects the largest number of people', 'the scientific problem that would create the biggest impact if solved', or 'one with the greatest economic impact', etc. I am interested in a specific version of this question, in which 'biggest' means 'most fundamental', i.e. one which can be said to be a root cause of many other problems.

Causal structure. A natural question to pose in order to move in the direction of getting an answer to my version of 'biggest problem' is: how many degrees of freedom are really present in the above responses (and what are they)? That is, are they all independent problems, or do they stem from a relatively small set (1-2) of root causes (with others being effects)? For example, lack of tolerance and energy shortage can be said to be causes of war.  It is also clear that not all the problems listed above are at the same level of generality -- some seem intuitively more abstract or fundamental than others. For e.g., war seems more in the realm of effects or symptoms, compared to say anger, fear or greed. In other words, even though they are all problems, some of the items in the list above are really effects rather than causes, and I am interested in the causes. To restate the question properly:

What is the true causal structure of the world problems?

Here is a small toy example of what I mean by causal structure:

An arrow from A to B indicates 'A causes B'. In the above example, energy shortage is stated to be a cause for war, and lack of tolerance is also stated as a cause for war. Also, once energy shortage is taken into account as a cause for war, then war is not caused by overpopulation or consumerism. In other words, overpopulation and consumerism do lead to war, but only through energy shortage.

One correct answer. What strikes me most about the restated question above is that there must exist a definite answer to it. That is, there is an objective reality associated with the question. The causal structure is not a matter of subjective opinion. There is one true structure of cause and effect. I am not claiming the number of independent root causes at the very top of the causal structure is 1 (perhaps this is the case). All I am saying there is one definite causal structure. The 'one correct answer' aspect is interesting because while it is arduous to build a causal structure, checking whether a proposed structure makes sense should be much easier.

I am looking for this causal structure. I think that gaining an understanding of the causal structure can be more insightful than an understanding of the each of the problems in isolation [1]. If you think you have have a causal structure of even part of the list of problems above, please write to me or leave me a comment. If you contact me with a proposed causal structure, please use the following format:

Cause1 -> Effect1 Cause2 -> Effect2

and so on, with one cause-effect pair per line. For the above toy example, this would be:

Overpopulation -> Energy shortage Consumerism -> Energy shortage Energy shortage -> War Lack of tolerance -> War

Think of this as a jigsaw puzzle, in which the problems are the blocks (feel free to pick whatever set of problems you want from the above list, or otherwise. Of course, the more complete the set, the better.), and one has access to as many arrows as needed (The fewer the arrows, the better).

_____

Notes

[1] I think this may be true in general. In middle school I recall homework and exam questions in various subjects asking us to fill in the blanks or match entries in column A with the entries in column B. I feel explaining the causal structure between a set of things would make a very instructive exercise in school because it would force a student to think.

Climate change and The Burglar's Stopping Problem

The climate change hypothesis is that global changes in climate leading to significantly higher number of severe weather events are predominantly man-made, and in particular, the release of greenhouse gases such as carbon-dioxide into the atmosphere is a leading cause. After conveniently escaping the national spotlight in the US during the presidential campaigns, climate change has once again appeared in the news, thanks to Hurricane Sandy. Munich-Re, the reinsurance giant released a report, somewhat presciently on Oct 17, that says:

Nowhere in the world is the rising number of natural catastrophes more evident than in North America. The study shows a nearly quintupled number of weather-related loss events in North America for the past three decades, compared with an increase factor of 4 in Asia, 2.5 in Africa, 2 in Europe and 1.5 in South America.

Unambiguously proving that man-made climate change has a role to play in a specific event such as Sandy is more of an ideological debate, than a statistical exercise. And so there are many many people who can boldly claim that man-made climate change is fiction.

A few industrialized nations are responsible for the bulk of CO2 emissions.

Some of these nations have refused to ratify the Kyoto Protocol, which calls for reduction in CO2 emissions. No points for guessing which colors in the map below denote countries that have not ratified the treaty.

(Brown = No intention to ratify. Red = Countries which have withdrawn from the Protocol. Source: Wikipedia)

Most of the world apparently believes in man-made climate change. When will these other countries wake up? I can't help but think of the following stopping problem:

Taken from G. Haggstrom (1966) “Optimal stopping and experimental design”, Ann. Math. Statist. 37, 7-29.

A burglar contemplates a series of burglaries. He may accumulate his larcenous earnings as long as he is not caught, but if he is caught during a burglary, he loses everything including his initial fortune, if any, and he is forced to retire. He wants to retire before he is caught. Assume that returns for each burglary are i.i.d. and independent of the event that he is caught, which is, on each trial, equally probable. He wants to retire with a maximum expected fortune. When should the burglar stop?

Traffic Lights: Regulation vs. free-markets

In the aftermath of the Sandy Hurricane, many parts of the NY/NJ area have sustained power outages, and as a result, traffic lights in these areas are not functional. This requires drivers to approach a traffic junction as a multi-way stop-sign. This got me thinking: What if, in place of traffic lights, we had just stop signs everywhere, and the rule was: the next car to go should be the car at the head of the longest queue. I believe this is an optimal scheduling policy in a certain sense (it provides an optimal throughput x delay product -- that is for a given average delay at the intersection, it would provide the highest rate number of cars going through [1] ). In this policy, each driver is trusted to follow the scheduling policy faithfully. For argument sake, I am ignoring (1) the time spent by each driver having to figure out which queue is the longest at each step, (2) how the driver at the head of each queue gets information about the length of each queue, and (3) the loss in efficiency incurred by slowing down and starting. Compared to this self-enforced scheduling policy, traffic lights can be very suboptimal. You know this if you have ever stood on a red light waiting to turn green while the street with the green signal has no traffic. Why then do we have traffic lights? The problem is that in the self-enforcing scheduling policy, there will be some drivers who will free-load, i.e. they will not obey the rule and simply take the turn for themselves, even if the turn belongs to someone else according to the scheduling rule. Further, when this happens, it will often result in collisions between the free loader and the rightful owner of the turn. This is why traffic lights are necessary, even though they come at the expense of reduced overall efficiency.

There is a nice lesson embedded here that speaks to the need for government regulation by way of analogy: Regulation is necessary to enforce fairness and safety by preventing freeloaders and accidents, even though a free market might provide higher overall benefit if everyone was guaranteed to behave properly. Therefore regulation is the price we must pay, in the form of reduced overall benefit, to counter the fact that all market participants do not behave as per the rules if left to themselves.

EDIT 1: The loss in overall utility when all participants are allowed to act selfishly, compared to the state where each participant acts for the overall good of the set of all participants, is called the price-of-anarchy. This is different from (but related to) the loss in overall utility from the imposition of regulations. A simple 2-player prisoner's dilemma can exhibit the price of anarchy when all participants are worse off if allowed at act selfishly, compared to the overall optimal for the 2 players. In the traffic light example, when players act selfishly, they create unfairness and also end up endangering everyone (including themselves, but perhaps they don't realize this bit). Hence the utility derived by each participant is lower, compared to if they all cooperated perfectly.

EDIT 2: Regulation can be thought of simply as a mechanism designed to improve the utility received by players beyond what it would be in anarchy, by changing the (rules of the) game a little. Regulation typically doesn't take the system to the overall optimal (which corresponds to perfectly cooperating players in the original game) of the original game. The 'price of regulation' ( = utility of overall optimum - that achieved by regulation) should be less than the price of anarchy (= overall optimum - state achieved by anarchy). Modern day regulators need to be really good at mechanism design!

EDIT 3: Perfect cooperation can be unstable against defection by free loaders [2] because the utility a player derives by unilaterally defecting is greater than that obtained by cooperating. If everyone is well aware of the risk of an accident upon defecting, then this can serve as a disincentive to defecting because the utility from defecting, after factoring in the probability of an accident may no longer make defecting worthwhile. This suggests that simply increasing awareness of the risks posed by misbehavior upon the misbehaving player, might improve the overall equilibrium a bit. Of course, this requires that the defector bear extra personal risk.

___

[1] I know this because it holds true for scheduling packets transmissions in a class of communication networks [citation required].

[2] I experienced free loaders first hand during the last few days after Sandy in 2 different contexts: people going out of turn at road intersections, and people trying to break into the long line at a gas station.

Habit Formation, Part 2

This post builds upon an earlier post on modeling habit formation. To follow this post, please read this post first. Go on, I'll wait. The urn model in that post is not really a complete description of habit formation because the limit distribution of the system (i.e., fraction of white balls after a very large number of draws) is completely determined by the initial configuration of the urn (i.e., number of white and black balls). In reality, habits are formed from repeated actions, and our actions are based on not just our inclinations but also the conscious choices that we make, which can sometimes be against our inclinations. Free will is missing from this model. There is no way to break a bad habit if one start out with one.

Therefore, let us alter the basic urn model slightly to capture choice: At each step, before picking a ball, we explicitly declare which color we are interested in for that pick: a white ball ( = follow the desirable habit) or a black ball ( = follow the undesirable habit). Suppose we choose to aim for a white ball. A ball is then sampled from the urn at random, and if a white ball does indeed come up, then:

  1. A payoff of $W is received (We wanted white and we got white, so we are happy to the extent of $W).
  2. The white ball is placed back into the urn, along with an extra white ball (Reinforcement).

But if we decide to pick white and a black ball comes up, then there is no payoff, and the black ball is placed back in the urn without any extra ball. However, if we chose black, a black ball is guaranteed to show up, we get a payoff of #B, where # is a different currency from $, and the black ball is placed back along with an extra black. The extra black ball makes picking a white ball harder when a white is desired.

Consider the implications of this model:

  1. Suppose there are very few white balls compared to black. A white ball would rarely show up. With the decision to pick a white, most of the time there will be no payoff and no reinforcement. But with the decision to pick a black ball, there is guaranteed payoff of #B units, but at the cost of picking a white later on harder.
  2. As the bad habit is reinforced, the chance of reverting to the good habit never dies away completely, but diminishes as the number of black balls grows in comparison to the whites. ('It's never too late, but it does get harder').
  3. The purpose of the different currencies is to model the fact that the pleasure obtained from following a bad habit is qualitatively different from the one obtained from following a good one. Since most habits are based on short-term pleasure at the expense of long term benefit (e.g. cigarette smoking, binge eating /drinking, putting off exercise),  currency # may correspond to lots of short term kicks, while $ may correspond to long term well being.

Short-term thrills

I believe human behavior is fundamentally driven by a desire to be happy. However, different individuals can have very different ideas about what will make them happy. Since most bad habits result from a focus on short term happiness, at the expense of long term happiness, we would do well to make the following tweak: # and $ can be added to give a total payoff, but each unit of # currency is worth only $latex \epsilon < 1$ unit, 1 iteration after it was earned. The other currency, $, however, does not decay with time. The question is what behavior emerges when the objective is simply maximization of total payoff? It is intuitive that the answer will depend upon whether the game has a finite horizon or an infinite horizon. Since players have finite lifetimes, it is appropriate to use a finite time horizon, but since a person does not know when he/she will die, the horizon must be a life expectancy with some uncertainty (variance). In other words, nobody knows when they will die, but everybody knows they will die. The only time it makes logical sense to pick a black ball is if the player believes his remaining lifetime is so small that the expected cumulative gain from deciding to pick whites is smaller than the expected cumulative gain (including the decay effect) from picking blacks. Of course this depends upon how he spent his past -- i.e. whether or not he built up a high fraction of whites.

Breaking a bad habit

Suppose a person starts out with a predominant inclination towards an undesirable habit and wishes to switch to the good habit. It is clear that if she always chooses the white ball, then she will eventually succeed in creating a larger number of white balls and a good $ balance. But she will have to go many tries and no payoff before that happens. In practice, this requires determination, and she may be tempted to pick the black ball because it is so easily available.

Suppose $latex D \in [0,1]$ is the fraction of times that (s)he will decide to aim for a white ball, i.e. the player's determination. It is intuitive that a larger value  $latex D$ would help her switch to the good habit in fewer iterations. It would be interesting to see if there is a threshold value of $latex D$ below which the bad habit is never broken. In particular, I expect there to be a threshold value $latex D(w,N-w)$, below which the bad hait is never broken, w.p. 1, where $latex w$ is the number of whites in the urn and $latex N-w$ is the number of blacks.

Game over when wealth < 1 unit

Now let us further suppose, that in the course of playing the game, a player can never have less than 1 currency units. In other words, the game stops if the total currency units with a player reaches zero. All other rules are the same: 1 unit earned from a white ball, 1 unit from a black ball but units earned from black balls decay to $latex \epsilon$ of their value every time slot. Deciding to pick a black guarantees a black, and an extra black goes in. Deciding to pick a white, provides a white with a probability proportional to the fraction of whites in the urn, and an extra white goes in. With the new rule stipulating 'game over' when the player's wealth falls below 1, the player is incentivized to pick a black if she ever approaches 1 unit of wealth. This is meant to model the inclination of individuals with low self worth and happiness levels to engage in activity that would yield short term happiness (alcohol, drugs, binge eating, etc. ) at the expense of long term prospects.